
SSARS 2007

Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland

 45

1. Introduction

Dynamic reliability aims at broadening the classical

event tree/ fault tree methodology so as to account for

the mutual interactions between the hardware

components of a plant and the physical evolution of

its process variables. The dynamical aspects concern

the ordering and timing of events in the accident

propagation, the dependence of transition rates and

failure criteria on the process variable values, the

human operator and control actions. Obviously, a

dynamic approach to reliability analysis would not

bear any significant added value to the analysis of

systems undergoing slow accidental transients for

which the control variables do not vary in such a way

to affect the component transition rates and/or to

demand the intervention of the control.

Dynamic reliability methods are based on a powerful

mathematical framework capable of integrating the

interactions between the components and the

environment in which they function. These methods

perform a more realistic modelling of the system and

hence improve the quality and accuracy of risk

assessment studies. A formal approach to

incorporating the dynamic behaviour of systems in

risk analysis was formulated under the name

Probabilistic Dynamics [10]. Several methods for

tackling the solution to the dynamic reliability

problem have been formulated over the past ten years

[1], [9], [13], [15], [16], [20]. Among these, Monte

Carlo methods have demonstrated to be particularly

efficient in taking up the numerical burden of such

analysis, while allowing for flexibility in the

assumptions and for a thorough uncertainty and

sensitivity analysis [14], [16].

For realistic systems, a dynamic approach to

reliability analysis is likely to require a significant

increase in the computational efforts, due to the need

of integrating the dynamic evolution, with its

characteristic times, with the system stochastic

evolution characterized by very different time

constants. The fast increase in computing power has

rendered, and will continue to render, more and more

feasible the incorporation of dynamics in the safety

and reliability models of complex engineering

systems. In particular, as mentioned above, the Monte

Carlo simulation framework offers a natural

environment for estimating the reliability of systems

Cadini Francesco

Zio Enrico

Pedroni Nicola
Department of Nuclear Engineering, Polytechnic of Milan, Milan, Italy

Recurrent neural networks for dynamic reliability analysis

Keywords

dynamic reliability analysis, infinite impulse response-locally recurrent neural network, long-term non-linear

dynamics, system state memory, simplified nuclear reactor

Abstract

A dynamic approach to the reliability analysis of realistic systems is likely to increase the computational burden,

due to the need of integrating the dynamics with the system stochastic evolution. Hence, fast-running models of

process evolution are sought. In this respect, empirical modelling is becoming a popular approach to system

dynamics simulation since it allows identifying the underlying dynamic model by fitting system operational data

through a procedure often referred to as ‘learning’. In this paper, a Locally Recurrent Neural Network (LRNN)

trained according to a Recursive Back-Propagation (RBP) algorithm is investigated as an efficient tool for fast

dynamic simulation. An application is performed with respect to the simulation of the non-linear dynamics of a

nuclear reactor, as described by a simplified model of literature.

Cadini Francesco, Zio Enrico, Pedroni Nicola

Recurrent neural networks for dynamic reliability analysis

 46

with dynamic features. However, the high reliability

of systems and components favours the adoption of

forced transition schemes and leads, correspondingly,

to an increment of the integration of physical models

in each trial. Thus, the time-description of the

dynamic processes may render the Monte Carlo

simulation quite burdensome and it becomes

mandatory to resort to fast-running models of process

evolution. In these cases, one may resort to either

simplified, reduced analytical models, such as those

based on lumped effective parameters [2], [7], [8], or

empirical models. In both cases, the model parameters

have to be estimated so as to best fit to the available

plant data.

In the field of empirical modelling, considerable

interest is devoted to Artificial Neural Networks

(ANNs) because of their capability of modelling non-

linear dynamics and of automatically calibrating their

parameters from representative input/output data [16].

Whereas feedforward neural networks can model

static input/output mappings but do not have the

capability of reproducing the behaviour of dynamic

systems, dynamic Recurrent Neural Networks (RNNs)

are recently attracting significant attention, because of

their potentials in temporal processing. Indeed,

recurrent neural networks have been proven to

constitute universal approximates of non-linear

dynamic systems [19].

Two main methods exist for providing a neural

network with dynamic behaviour: the insertion of a

buffer somewhere in the network to provide an

explicit memory of the past inputs, or the

implementation of feedbacks.

As for the first method, it builds on the structure of

feedforward networks where all input signals flow in

one direction, from input to output. Then, because a

feedforward network does not have a dynamic

memory, tapped-delay-lines (temporal buffers) of the

inputs are used. The buffer can be applied at the

network inputs only, keeping the network internally

static as in the buffered multilayer perceptron (MLP)

[11], or at the input of each neuron as in the MLP with

Finite Impulse Response (FIR) filter synapses (FIR-

MLP) [4]. The main disadvantage of the buffer

approach is the limited past-history horizon, which

needs to be used in order to keep the size of the

network computationally manageable, thereby

preventing modelling of arbitrary long time

dependencies between inputs and outputs [12]. It is

also difficult to set the length of the buffer given a

certain application.

Regarding the second method, the most general

example of implementation of feedbacks in a neural

network is the fully recurrent neural network

constituted by a single layer of neurons fully

interconnected with each other or by several such

layers [18]. Because of the required large structural

complexity of this network, in recent years growing

efforts have been propounded in developing methods

for implementing temporal dynamic feedback

connections into the widely used multi-layered

feedforward neural networks. Recurrent connections

can be added by using two main types of recurrence or

feedback: external or internal. External recurrence is

obtained for example by feeding back the outputs to

the input of the network as in NARX networks [5],

[17]; internal recurrence is obtained by feeding back

the outputs of neurons of a given layer in inputs to

neurons of the same layer, giving rise to the so called

Locally Recurrent Neural Networks (LRNNs) [6].

The major advantages of LRNNs with respect to the

buffered, tapped-delayed feedforward networks and to

the fully recurrent networks are [6]: 1) the hierarchic

multilayer topology which they are based on is well

known and efficient; 2) the use of dynamic neurons

allows to limit the number of neurons required for

modelling a given dynamic system, contrary to the

tapped-delayed networks; 3) the training procedures

for properly adjusting the network weights are

significantly simpler and faster than those for the fully

recurrent networks.

In this paper, an Infinite Impulse Response-Locally

Recurrent Neural Network (IIR-LRNN) is adopted

together with the Recursive Back-Propagation (RBP)

algorithm for its batch training [6]. In the IIR-LRNN

the synapses are implemented as Infinite Impulse

Response digital filters, which provide the network

with system state memory.

The proposed neural approach is applied to a highly

non-linear dynamic system of literature, the

continuous time Chernick model of a simplified

nuclear reactor [8]: the IIR-LRNN is devised to

estimate the neutron flux temporal evolution only

knowing the reactivity forcing function. The IIR-

LRNN ability of dealing with both the short-term

dynamics governed by the instantaneous variations of

the reactivity and the long-term dynamics governed

by Xe oscillations is verified by extensive simulations

on training, validation and test transients.

The paper is organized as follows: in Section 2, the

IIR-LRNN architecture is presented in detail together

with the RBP training algorithm; in Section 3, the

adopted neural approach is applied to simulate the

reactor neutron flux dynamics. Finally, some

conclusions are proposed in the last Section.

2. Locally Recurrent Neural Networks

2.1. The IIR-LRNN architecture and forward

calculation

SSARS 2007

Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland

 47

A LRNN is a time-discrete network consisting of a

global feed-forward structure of nodes interconnected

by synapses which link the nodes of the k-th layer to

those of the successive (k + 1)-th layer, k = 0, 1, …,

M, layer 0 being the input and M the output.

Differently from the classical static feed-forward

networks, in an LRNN each synapse carries taps and

feedback connections. In particular, each synapse of

an IIR-LRNN contains an IIR linear filter whose

characteristic transfer function can be expressed as

ratio of two polynomials with poles and zeros

representing the AR and MA part of the model,

respectively.

For simplicity of illustration, and with no loss of

generality, we start by considering a network

constituted by only one hidden layer, i.e. M = 2, like

the one in Figure 1. At the generic time t, the input to

the LRNN consists of a pattern x(t)
0N , whose

components feed the nodes of the input layer 0 which

simply transmit in output the input received, i.e. x
0

m(t)

= xm(t), m = 1, 2, …, N
0
. A bias node is also typically

inserted, with the index m = 0, such that x
0
0(t) = 1 for

all values of t. The output variable of the m-th input

node at time t is tapped a number of delays L
1

nm - 1

(except for the bias node output which is not tapped,

i.e. L
1

n0 – 1 = 0) so that from each input node m 0

actually L
1

nm values, x
0

m(t), x
0
m(t - 1), x

0
m(t - 2), …,

x
0

m(t – L
1
nm + 1) are processed forward through the

synapses connecting input node m to the generic

hidden node n = 1, 2, … N
1
. The L

1
nm values sent from

the input node m to the hidden node n are first

multiplied by the respective synaptic weights w
1
nm(p), p

= 0, 1, …, L
1
nm - 1 being the index of the tap delay

(the synaptic weight w
1

n0(p) connecting the bias input

node m = 0 is the bias value itself) and then processed

by a summation operator to give the MA part of the

model with transfer function

 11

)1(

21

)2(

1

)1(

1

)0(

1

1...

 nm

nm

L

Lnmnmnmnm
BwBwBww , (1)

B being the usual delay operator of unitary step. The

finite set of weights w
1

nm(p) which appear in the MA

model form the so called impulse response function

and represent the components of the MA part of the

synaptic filter connecting input node m to hidden node

n. The weighed sum thereby obtained, y
1
nm, is fed

back, for a given number of delays I
1
nm (I

1
n0 = 0 for

the bias node) and weighed by the coefficient v
1
nm(p)

(the AR part of the synaptic filter connecting input

node m to hidden node n, with the set of weights

v
1

nm(p) being the so-called AR filter’s impulse response

function), to the summation operator itself to give the

output quantity of the synapse ARMA model:

11

1

11

)(

1

0

01

)(

1)()()(
nmnm I

p

nmpnm

L

p

npnmnm
ptyvptxwty . (2)

This value represents the output at time t of the IIR-

filter relative to the nm-synapse, which connects the

m-th input neuron to the n-th hidden neuron. The first

sum in (2) is the MA part of the synaptic filter and the

second is the AR part. As mentioned above, the index

m = 0 usually represents the bias input node, such that

x
0

0(t) is equal to one for all values of t, L
1
n0 – 1 = I

1
n0 =

0 and thus, y
1
n0(t) = w

1
n0(0).

The quantities y
1

nm(t), m = 0, 1, …, N
0
, are summed to

obtain the net input s
1

n(t) to the non-linear activation

function f
1
(·), typically a sigmoid, Fermi function, of

the n-th hidden node, n = 1, 2, …N
1
:

0

0

11)()(
N

m

nmn
tyts . (3)

The output of the activation function gives the state of

the n-th hidden neuron, x
1
n(t):

)()(111 tsftx
nn

 . (4)

The output values of the nodes of the hidden layer 1,

x
1

n(t), n = 1, 2, …, N
1
, are then processed forward

along the AR and MA synaptic connections linking

the hidden and output nodes, in a manner which is

absolutely analogous to the processing between the

input and hidden layers. A bias node with index n = 0

is also typically inserted in the hidden layer, such that

x
1

0(t) = 1 for all values of t.

The output variable of the n-th hidden node at time t is

tapped a number of delays L
M

rn – 1 (= 0 for the bias

node n = 0) so that from each hidden node n actually

L
M

rn values, x
1
n(t), x

1
n(t – 1), x

1
n(t – 2), …, x

1
n(t - L

M
rn

+ 1), are processed forward through the MA-synapses

connecting the hidden node n to the output node r = 1,

2, …, N
M

. The L
M

rn values sent from the hidden node n

to the output node r are first multiplied by the

respective synaptic weights w
M

rn(p), p = 0, 1, …, L
M

rn –

1 being the index of the tap delay (the synaptic weight

w
M

r0 connecting the bias hidden node n = 0 is the bias

value itself) and then processed by a summation

operator to give the MA part of the model with

transfer function

1

)1(

2

)2()1()0(
...

M
rn

M
rn

LM

Lrn

M

rn

M

rn

M

rn
BwBwBww . (5)

The sum of these values, y
M

rn, is fed back, for a

given number of delays I
M

rn (I
M

r0 = 0 for the bias

node) and weighed by the coefficient v
M

rn(p) (the

AR part of the synaptic filter connecting hidden

node n to output node r, with the set of weights

Cadini Francesco, Zio Enrico, Pedroni Nicola

Recurrent neural networks for dynamic reliability analysis

 48

v
M

rn(p) being the corresponding impulse response

function), to the summation operator itself to give

the output quantity of the synapse ARMA model:

M
rn

M
rn I

p

M

rn

M

prn

L

p

n

M

prn

M

rn
ptyvptxwty

1

)(

1

0

1

)(
)()()(. (6)

As mentioned before, the index n = 0 represents the

bias hidden node, such that x
1
0(t) is equal to one for all

values of t, L
M

r0 – 1 = I
M

r0 = 0 and thus, y
M

r0(t) =

w
M

r0(0).

The quantities y
M

rn(t), n = 0, 1, …, N
1
, are summed to

obtain the net input s
M

r(t) to the non-linear activation

function f
M

(·), also typically a sigmoid, Fermi

function, of the r-th output node r = 1, 2, …, N
M

:

1

0

)()(
N

n

M

rn

M

r
tyts . (7)

The output of the activation function gives the state of

the r-th output neuron, x
M

r(t):

)()(tsftx M

r

MM

r
 . (8)

The extension of the above calculations to the case of

multiple hidden layers (M > 2) is straightforward. The

time evolution of the generic neuron j belonging to

the generic layer k = 1, 2, …, M is described by the

following equations:

)0,1()()(jnodebiasthefortsftx k

j

kk

j
, (9)

1

0

)()(

kN

l

k

jl

k

j
tyts , (10)

k
jl

k
jl I

p

k

jl

k

pjl

L

p

k

l

k

pjl

k

jl
ptyvptxwty

1

)(

1

0

1

)(
)()()(. (11)

Note that if all the synapses contain only the MA part

(i.e., I
k
jl = 0 for all j, k, l), the architecture reduces to a

FIR-MLP and if all the synaptic filters contain no

memory (i.e., L
k
jl – 1 = 0 and I

k
jl = 0 for all j, k, l), the

classical multilayered feed-forward static neural

network is obtained.

2.2. The Recursive Back-Propagation (RBP)

algorithm for batch training

The Recursive Back-Propagation (RBP) training

algorithm [6] is a gradient - based minimization

algorithm which makes use of a particular chain rule

expansion rule expansion for the computation of the

necessary derivatives. A thorough description of the

RBP training algorithm is given in the Appendix at

the end of the paper.

INPUT

(k = 0)

HIDDEN

(k = 1)

OUTPUT

(k = 2 = M)

N
0
 = 1 N

1
 = 2 N

M
 = 1

 L
1

11 – 1 = 1 L
M

11 - 1 = 2

 L
1

21 – 1 = 1 L
M

12 – 1 = 1

 I
1

11 = 2 I
M

11 = 1

 I
1

21 = 1 I
M

12 = 0

Figure 1. Scheme of an IIR-LRNN with one hidden

layer

3. Simulating reactor neutron flux dynamics

by LRNN

In general, the training of an ANN to simulate the

behaviour of a dynamic system can be quite a difficult

task, mainly due to the fact that the values of the

system output vector y(t) at time t depend on both the

forcing functions vector x(·) and the output y(·) itself,

at previous steps:

)...,),1(...,),1(),(()(Θyxxy tttFt , (12)

where Θ is a set of adjustable parameters and F(·) the

non-linear mapping function describing the system

dynamics.

In this Section, a locally recurrent neural network is

trained to simulate the dynamic evolution of the

neutron flux in a nuclear reactor.

3.1. Problem formulation

The reference dynamics is described by a simple

model based on a one group, point kinetics equation

with non-linear power reactivity feedback, combined

with Xenon and Iodine balance equations [8]:

SSARS 2007

Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland

 49

I
dt

dI

XeXeI
dt

dXe

Xe
cdt

d

IfI

XeXeIfXe

f

Xe

 0

 (13)

where Ф, Xe and I are the values of flux, Xenon and

Iodine concentrations, respectively.

The reactor evolution is assumed to start from an

equilibrium state at a nominal flux level Φ0= 4.66·10
12

n/cm
2
s. The initial reactivity needed to keep the steady

state is ρ0 = 0.071 and the Xenon and Iodine

concentrations are Xe0 = 5.73·10
15

 nuclei/cm
3
 and I0 =

5.81·10
15

 nuclei/cm
3
, respectively. In the following,

the values of flux, Xenon and Iodine concentrations

are normalized with respect to these steady state

values.

The objective is to design and train a LRNN to

reproduce the neutron flux dynamics described by the

system of differential equations (13), i.e. to estimate

the evolution of the normalized neutron flux Φ(t),

knowing the forcing function ρ(t).

Notice that the estimation is based only on the current

values of reactivity. These are fed in input to the

locally recurrent model at each time step t: thanks to

the MA and AR parts of the synaptic filters, an

estimate of the neutron flux Φ(t) at time t is produced

which recurrently accounts for past values of both the

network’s inputs and the estimated outputs, viz.

)...,),1(ˆ...,),1(),(()(ˆ Θ tttFt (14)

where Ө is the set of adjustable parameters of the

network model, i.e. the synaptic weights.

On the contrary, the other non-measurable system

state variables, Xe(t) and I(t), are not fed in input to

the LRNN: the associated information remains

distributed in the hidden layers and connections. This

renders the LRNN modelling task quite difficult.

3.2. Design and training of the LRNN

The LRNN used in this work is characterized by three

layers: the input, with two nodes (bias included); the

hidden, with six nodes (bias included); the output with

one node. A sigmoid activation function has been

adopted for the hidden and output nodes.

The training set has been constructed with Nt = 250

transients, each one lasting T = 2000 minutes and

sampled with a time step Δt of 40 minutes, thus

generating np = 50 patterns. Notice that a temporal

length of 2000 minutes allows the development of the

long-term dynamics, which are affected by the long-

term Xe oscillations. All data have been normalized in

the range [0.2, 0.8].

Each transient has been created varying the reactivity

from its steady state value according to the following

step function:

0

0
)(t

s

s

Tt

Tt

 (15)

where Ts is a random steady-state time interval and Δρ

is random reactivity variation amplitude. In order to

build the 250 different transients for the training, these

two parameters have been randomly chosen within the

ranges [0, 2000] minutes and [-5·10
-4

, +5·10
-4

],

respectively.

The training procedure has been carried out on the

available data for nepoch = 200 learning epochs

(iterations). During each epoch, every transient is

repeatedly presented to the LRNN for nrep = 10

consecutive times. The weight updates are performed

in batch at the end of each training sequence of length

T. No momentum term nor an adaptive learning rate

[6] turned out necessary for increasing the efficiency

of the training, in this case.

Ten training runs have been carried out to set the

number of delays (orders of the MA and AR parts of

the synaptic filters) so as to obtain a satisfactory

performance of the LRNN, measured in terms of a

small root mean square error (RMSE) on the training

set.

As a result of these training runs, the MA and AR

orders of the IIR synaptic filters have been set to 12

and 10, respectively, for both the hidden and the

output neurons.

3.3. Results

The trained LRNN is first verified with respect to its

capability of reproducing the transients employed for

the training itself. This capability is a minimum

requirement, which however does not guarantee the

proper general functioning of the LRNN when new

transients, different from those of training, are fed into

the network. The evolution of the flux, normalized

with respect to the steady state value Φ0,

corresponding to one sample training transients is

shown in Figure 2: as expected, the LRNN estimate of

the output (crosses) is in satisfactory agreement with

the actual transient (circles).

Notice the ability of the LRNN of dealing with both

the short-term dynamics governed by the

instantaneous variations of the forcing function

(i.e., the reactivity step) and the long-term dynamics

governed by Xe oscillations.

Cadini Francesco, Zio Enrico, Pedroni Nicola

Recurrent neural networks for dynamic reliability analysis

 50

0 400 800 1200 1600 2000
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Time (min.)

N
o
rm

a
li
z
e

d
 f

lu
x

Training transient: step forcing function

truth

LRNN

Figure 2. Comparison of the model-simulated

normalized flux (circles) with the LRNN-estimated

one (crosses), for two sample transients of the training

set

3.3.1. Validation phase: training like dynamics

The procedure for validating the generalization

capability of the LRNN to transients different from

those of training is based on Nt = 80 transients of T =

2000 minutes each, initiated again by step variations

in the forcing function ρ(t) as in eq. (15), with timing

and amplitude randomly sampled in the same ranges

as in the training phase.

The results reported in Figure 3 confirm the success

of the training since the LRNN estimation errors are

still small for these new transients. Furthermore, the

computing time is about 5000 times lower than that

required by the numerical solution of the model. This

makes the LRNN model very attractive for real time

applications, e.g. for control or diagnostic purposes,

and for applications for which repeated evaluations

are required, e.g. for uncertainty and sensitivity

analyses.

3.3.2. Test phase

The generalization capabilities of the trained and

validated LRNN have been then tested on a new set of

transients generated by forcing functions variations

quite different from those used in both the training

and the validation phases. The test set consists of three

transients batches created by three functional shapes

of the forcing function ρ(t) never seen by the LRNN:

0 400 800 1200 1600 2000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time (min.)

N
o
rm

a
li
z
e

d
 f

lu
x

Validation transient: step forcing function

truth

LRNN

Figure 3. Comparison of the model-simulated

normalized flux (circles) with the LRNN-estimated

one (crosses), for one sample transient of the

validation set

 A ramp function:

vs

vsssvv

s

TTt

TTtTTTtT

Tt

t

,

)16(,)/()/(

,

)(

0

0

0

where the steady-state time interval Ts (0 ≤ Ts ≤

2000 min), the ramp variation time interval Tv (0 ≤

Tv ≤ 2000 min) and the reactivity variation

amplitude Δρ (-5·10
-4

 ≤ Δρ ≤ +5·10
-4

) are

randomly extracted in their ranges of variation in

order to generate the different transients;

 A sine function:

)2sin()(ftt , (17)

where f is the oscillation frequency (1 ≤ f ≤ 2 min
-

1
) and Δρ (-5·10

-4
 ≤ Δρ ≤ +5·10

-4
) is the reactivity

variation amplitude;

 Random reactivity variation amplitude with a

uniform probability density function between -

5·10
-4

 and +5·10
-4

.

A total of Nt = 80 temporal sequences has been

simulated for each batch, producing a total of 240 test

transients. The temporal length and the sampling time

steps of each transient are the same as those of the

training and validation sets (2000 and 40 minutes,

respectively).

Figures 4, 5 and Figure 6 show a satisfactory

agreement of the LRNN estimation with the model

simulation, even for cases quite different from the

dynamic evolution considered during training.

SSARS 2007

Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland

 51

0 400 800 1200 1600 2000
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time (min.)

N
o
rm

a
li
z
e

d
 f

lu
x

Test transient: ramp forcing function

truth

LRNN

Figure 4. Comparison of the model-simulated

normalized flux (circles) with the LRNN-estimated

one (crosses), for one sample ramp transient of the test

set

0 400 800 1200 1600 2000
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Time (min.)

N
o
rm

a
li
z
e

d
 f

lu
x

Test transient: sine forcing function

truth

LRNN

Figure 5. Comparison of the model-simulated

normalized flux (circles) with the LRNN-estimated

one (crosses), for one sample sinusoidal transient of

the test set

0 400 800 1200 1600 2000
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time (min.)

N
o
rm

a
li
z
e

d
 f

lu
x

Test transient: random forcing function

truth

LRNN

Figure 6. Comparison of the model-simulated

normalized flux (circles) with the LRNN-estimated

one (crosses), for one sample random transient of the

test set

These results are synthesized in Table 1, in terms of

the following performance indices: root mean square

error (RMSE) and mean absolute error (MAE).

Table 1. Values of the performance indices (RMSE

and MAE) calculated over the training, validation and

test sets for the LRNN applied to the reactor neutron

flux estimation

 ERRORS

Set
Forcing

function

n. of

sequences
RMSE MAE

Training Step 250 0.0037 0.0028

Validation Step 80 0.0098 0.0060

Test

Ramp 80 0.0049 0.0039

Sine 80 0.0058 0.0051

Random 80 0.0063 0.0054

4. Conclusion

Dynamic reliability analyses entail the rapid

simulation of the system dynamics under the different

scenarios and configurations, which occur during the

system stochastic life evolution. However, the

complexity and nonlinearities of the involved

processes are such that analytical modelling becomes

burdensome, if at all feasible.

In this paper, the framework of Locally Recurrent

Neural Networks (LRNNs) for non-linear dynamic

simulation has been presented in detail. The powerful

dynamic modelling capabilities of this type of neural

networks has been demonstrated on a case study

concerning the evolution of the neutron flux in a

nuclear reactor as described by a simple model of

literature, based on a one group, point kinetics

equation with non-linear power reactivity feedback,

coupled with the Xenon and Iodine balance equations.

An Infinite Impulse Response-Locally Recurrent

Neural Network (IIR-LRNN) has been successfully

designed and trained, with a Recursive Back-

Propagation (RBP) algorithm, to the difficult task of

estimating the evolution of the neutron flux, only

knowing the reactivity evolution, since the other non

measurable system state variables, i.e. Xenon and

Iodine concentrations, remain hidden.

The findings of the research seem encouraging and

confirmatory of the feasibility of using recurrent

neural network models for the rapid and reliable

system simulations needed in dynamic reliability

analysis.

References

[1] Aldemir, T., Siu, N., Mosleh, A., Cacciabue, P.C.

& Goktepe, B.G. (1994). Eds.: Reliability and

Safety Assessment of Dynamic Process System

Cadini Francesco, Zio Enrico, Pedroni Nicola

Recurrent neural networks for dynamic reliability analysis

 52

NATO-ASI Series F, Vol. 120 Springer-Verlag,

Berlin.

[2] Aldemir, T., Torri, G., Marseguerra, M., Zio, E. &

Borkowski, J. A. (2003). Using point reactor

models and genetic algorithms for on-line global

xenon estimation in nuclear reactors. Nuclear

Technology, 143, No. 3, 247-255.

[3] Back, A. D. & Tsoi, A. C. (1993). A simplified

gradient algorithm for IIR synapse multi-layer

perceptron. Neural Comput. 5: 456-462.

[4] Back, A. D. et al. (1994). A Unifying View of

Some Training Algorithms for Multilayer

Perceptrons with FIR Filter Synapses. Proc. IEEE

Workshop Neural Netw. Signal Process.: 146.

[5] Boroushaki, M. et al. (2003). Identification and

control of a nuclear reactor core (VVER) using

recurrent neural networks and fuzzy system. IEEE

Trans. Nucl. Sci. 50(1): 159-174.

[6] Campolucci, P. et al. (1999). On-Line Learning

Algorithms of Locally Recurrent Neural Networks.

IEEE Trans. Neural Networks 10: 253-271.

[7] Carlos, S., Ginestar, D., Martorell, S. & Serradell,

V. (2003). Parameter estimation in

thermalhydraulic models using the multidirectional

search method. Annals of Nuclear Energy 30, 133-

158.

[8] Chernick, J. (1960). The dynamics of a xenon-

controlled reactor. Nuclear Science and

Engineering 8: 233-243.

[9] Cojazzi, G., Izquierdo, J.M., Melendez, E. &

Sanchez-Perea, M. (1992). The Reliability and

Safety Assessment of Protection Systems by the

Use of Dynamic Event Trees (DET). The

DYLAM-TRETA package. Proc. XVIII annaul

meeting Spanish Nuclear Society.

[10] Devooght, J. & Smidts, C. (1992). Probabilistic

Reactor Dynamics I. The Theory of Continuous

Event Trees, Nucl. Sci. and Eng. 111, 3, pp. 229-

240.

[11] Haykin, S. (1994). Neural networks: a

comprehensive foundation. New York: IEEE Press.

[12] Hochreiter, S. & Schmidhuber, J. (1997). Long

short-term memory. Neural Computation, 9(8):

1735-1780.

[13] Izquierdo, J.M., Hortal, J., Sanchez-Perea, M. &

Melendez, E (1994). Automatic Generation of

dynamic Event Trees: A Tool for Integrated Safety

Assessment (ISA), Reliability and Safety

Assessment of Dynamic Process System NATO-ASI

Series F, Vol. 120 Springer-Verlag, Berlin.

[14] Labeau, P. E. & Zio, E. (1998). The Cell-to-

Boundary Method in the Frame of Memorization-

Based Monte Carlo Algorithms. A New

Computational Improvement in Dynamic

Reliability, Mathematics and Computers in

Simulation, Vol. 47, No. 2-5, 329-347.

[15] Labeau, P.E. (1996). Probabilistic Dynamics:

Estimation of Generalized Unreliability Trhough

Efficient Monte Carlo Simulation, Annals of

Nuclear Energy, Vol. 23, No. 17, 1355-1369.

[16] Marseguerra, M. & Zio, E. (1996). Monte Carlo

approach to PSA for dynamic process systems,

Reliab. Eng. & System Safety, vol. 52, 227-241.

[17] Narendra, K. S. & Parthasarathy, K. (1990).

Identification and control of dynamical systems

using neural networks. IEEE Trans. Neural

Networks 1: 4-27.

[18] Pearlmutter, B. (1995). Gradient Calculations for

Dynamic Recurrent Neural networks: a Survey.

IEEE Trans. Neural Networks 6: 1212.

[19] Siegelmann, H. & Sontag, E. (1995). On the

Computational Power of Neural Nets. J.

Computers and Syst. Sci. 50 (1): 132.

[20] Siu, N. (1994). Risk Assessment for Dynamic

Systems: An Overview, Reliab. Eng. & System

Safety, vol. 43, 43-74.

Appendix: the Recursive Back-Propagation

(RBP) Algorithm for batch training

Consider one training temporal sequence of length T

and denote by dr(t), r = 1, 2, …, N
M

, the desired output

value of the training sequence at time t.

The instantaneous squared error at time t, e
2
(t), is

defined as the sum over all N
M

 output nodes of the

squared deviations of the network outputs x
M

r(t) from

the corresponding desired value in the training

temporal sequence, dr(t):

MN

r

r
tete

1

22)()(, (1’)

where

)()()(txtdte M

rrr
 . (2’)

The training algorithm aims at minimizing the global

squared error E
2
 over the whole training sequence of

length T,

T

t

teE
1

22)(, (3’)

This is achieved by modifying iteratively the network

weights w
k
jl(p), v

k
jl(p) along the gradient descent, viz.

SSARS 2007

Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland

 53

,
2

,
2

)(

2

)(

)(

2

)(

k
pjl

k
pjl

k
pjl

k
pjl

v

E
v

w

E
w

 (4’)

where μ is the learning rate.

Introducing the usual backpropagating error and delta

quantities with respect to the output, x
k
j(t), and input,

s
k
j(t), of the generic node j of layer k:

)(2

1
)(

2

tx

E
te

k
j

k
j

 , (5’)

 ,)()(

)(

)(

)(2

1

)(2

1
)(

'

22

tsfte

ts

tx

tx

E

ts

E
t

k
jk

k
j

k
j

k
j

k
j

k
j

k
j

 (6’)

the chain rule for the modification (4’) of the MA and

AR synaptic weights w
k
jl(p), v

k
jl(p) can be written as

.
)(

)(

)(

)(2

,
)(

)(

)(

)(
2

)(
1

1
)(

2

)(

)(
1

1
)(

2

)(

k
pjl

k
jT

t

k
j

T

t
k

pjl

k
j

k
j

k
pjl

k
pjl

k
jT

t

k
j

T

t

k
pjl

k
j

k
j

k
pjl

v

ts
t

v

ts

ts

E
v

w

ts
t

w

ts

ts

E

w

 (7’)

Note that the weights updates (7’) are performed in

batch at the end of the training sequence of length T.

From (10),

 ,
)()(

;
)()(

)()()()(
k

pjl

k
jl

k
pjl

k
j

k
pjl

k
jl

k
pjl

k
j

v

ty

v

ts

w

ty

w

ts

 (8’)

so that from the differentiation of (11) one obtains

 ,
)(

)(
)(

)(
1

)(
1

)(
k

pjl

k
j

k
jl

I

k
jl

k
lk

pjl

k
j

w

ts
vptx

w

ts

 (9’)

 .
)(

)(
)(

)(
1

)(

)(
k

pjl

k
j

k
jl

I

k
jl

k
jlk

pjl

k
j

v

ts
vpty

v

ts

 (10’)

To compute δ

k
j(t) from (6’), we must be able to

compute e
k
j(t). Applying the chain rule to (5’), one has

1

1 1

1

1

2

)(

)(

)(2

1
)(

kN

q

T

k
j

k
q

k
q

k
j

tx

s

s

E
te

, Mk . (11’)

Under the hypothesis of synaptic filter temporal

causality (according to which the state of a node at

time t influences the network evolution only at

successive times and not at previous ones), the

summation along the time trajectory can start from τ =

t. Exploiting the definitions (6’) and (8’), changing the

variables as τ – p t and considering that for the

output layer, i.e. k = M, the derivative ∂E
2
/∂x

M
j(t) can

be computed directly from (2’), the back-propagation

of the error through the layers can be derived

tT

p

kN

q
k
j

k
qik

q

j

k
j

Mk
tx

pty
pt

Mkeqte

te

0

1

1

1

1 ,,
)(

)(
)(

),'2.()(

)(

(12’)

where from (11)

.,0

10,

)(

)(

)(

)(

11
)(

),1min(

1

1

1
)(

1

otherwise

Lpw

tx

pty
v

tx

pty

k
qj

k
pqj

pk
qjI

k
j

k
qjk

qjk
j

k
qj

 (13’)

Cadini Francesco, Zio Enrico, Pedroni Nicola

Recurrent neural networks for dynamic reliability analysis

 54

